1.系统误差带来的不确定度属于什么不确定度

2.系统误差包括哪几类

3.系统误差和偶然误差有什么不同?在测量工作中对这两种误差应如何处理?

4.降低分层处理的误差措施有哪三种

5.电子测量原理的内容提要

6.什么是误差?

7.偶然误差和系统误差有什么区别?

8.物理实验中系统误差与偶然误差的区别?

电脑系统误差测量原理_电脑系统误差测量原理

摘要:实验中的系统误差,主要有两个来源:一是由于测量仪器本身有某种倾向的偏差;另一方面是由于测量原理的近似性或测量方法与理论要求的不一致。任何一种系统误差产生的原因,并设法加以较正,就能减小系统误差的影响,但完全发现和减少实际存在的系统误差是比较困难的工作。在实际工作中,需要对整个实验所依据的原理、方法、测量步骤、使用的仪器、仪表等可能引起系统误差的因素进行详尽,并通过标准仪器,改进实验装置和实验方法,或对测量结果进行理论上的修正来尽可能地减少系统误差。

关键词:物理实验 系统误差 误差 测量原理 修正方法 探测法

在物理实验课中,用“伏安法”测未知电阻是电学里的一个最基本的实验,其实验的目的是,掌握用伏安法测量电阻及其误差法的基本方法。

关于实验中的系统误差及偶然误差的初步知识,在实验教材中已提出并在某些实验中有所,在某些实验中还要求做些修正。系统误差,主要有两个来源:一是由于测量仪器本身有某种倾向的偏差,例如砝码本身质量不准;天平不等臂;电流表或电压表不准;温度计指示值偏大或偏小等等。另一方面是由于测量原理的近似性或测量方法与理论要求的不一致。例如,实验原理中忽略了某些次要因素,也会使经过计算所得的结果偏离实际。如在牛顿第二定律的实验中,牵引小车的砝码只按重量而不按质量计算;测量重力时不考虑空气的浮力;测量热量时没有考虑与环境的热交换;测量电路中的电流或电压时没有考虑电流表的降压作用和电压表的分流等等。有时观测者的操作也会引入倾向性的误差,如有人读数总是习惯性的偏高或偏低;用停表测时间时,有的人总是习惯性的超前或习惯性的落后按表等等。

实践和理论都证明,偶然误差在多次测量中偏大及偏小的机会是均等的,因而多次测量结果的平均值就接近于真实值,求平均值及作图线的方法,都是为了对偶然误差进行修正。但是系统误差在一定原理、一定仪器、一定的观察者,偏大或偏小却与测量次数无关,不能采用平均值的方法修正。因此,任何一种系统误差产生的原因,并设法加以较正,就能减小系统误差的影响,但完全发现和减少实际存在的系统误差是比较困难的工作。在实际工作中,需要对整个实验所依据的原理、方法、测量步骤、使用的仪器、仪表等可能引起系统误差的因素进行详尽,并通过标准仪器,改进实验装置和实验方法,或对测量结果进行理论上的修正来尽可能地减少系统误差。

(一)用电流表内接法测量未知电阻阻值时,由电流表所引起的系统误差及其修正方法:

1、如图所示电路,在电流表内接法中,由于电压表的电压值U包括了电流表两端的电压。因此,测量值要大于被测电阻的实际值,设电流表的内阻为RA,待测电阻为RX,则:

R=U/I=RA+RX 或:RX=R﹣RA……………①

2、根据误差理论,测量的相

对误差为:

△=(R﹣RX)/RX × %

=(RA+RX﹣RX)/RX ×%

=RA/ RX ×%………②

∴RX=RA/△………………③

①、②两式可知:用电流表内接法测量未知电阻,会出现正误差,即测量值R大于真实值RX。

①式的用途:若由以上实验测出R,只要减去RA,即得到RX,可以很方便地对系统误差进行修正。因此,应当把电流表的内阻值标在表盘上,或测出后写到胶布上,贴到表上。

②式的用途:当需要估计测量的系统误差时,在实际测量前可据此式计算出来,据此式,当RA<<RX时,△→0,误差可以忽略。所以电流表内接法适于测阻值较大的电阻。

③式的用途:当我们限定系统误差△不得超过多少时,就可以用③式,计算适合此法测试的电阻范围。

值得我们关注的是,在实际工作中,通常要综合考虑各个方面。例如测量电阻值,从减小误差角度希望RA越小越好。但是,这样电流表的灵敏度就相对较小,为了减小偶然误差,要求指针转动到满刻度的2/3以上为好,不过这时很可能实际通过的电流已超过了待测电阻允许通过的电流值。因此一般而言,高阻值的电阻的功率与低阻值的电阻功率相同时,耐过载的能力是更差的,强电流测量时因过载而容易烧坏,在实际测量中应该注意到这一事项。

(二)用电流表外接法测量未知电阻时,由电压表引起的系统误差及其修正方法。

1、如图所示电路,在电流表外接中,由于电流表测出的电流包括了流过的电压表的电流。因此,测量值要小于被测电阻的实际值,设电压表内阻为R,通过的电流为I,则:

RX=U/(I﹣I)=U/(I﹣U/R)………………④

2、根据误差理论,相对误差为:

△= ×%= ×%

=- ×%= ×%……⑤

∴RX= = ………………⑥

④、⑤两式可知:用电流表内接法测量未知电阻,会出现负误差,即测量值R小于真实值RX。

④式的用途:若由以上实验测出R,只要代人R,即得到RX,可以很方便地对系统误差进行修正。因此,应当把电压表的内阻值标在表盘上,或测出后写到胶布上,贴到表上。

⑤式的用途:当需要估计测量的系统误差时,在实测前可据此式计算出来,据此式,当RX<<R时,△→0,误差可以忽略。所以电流表内接法适于测阻值较小的电阻。

⑥式的用途:当我们限定系统误差△不得超过多少时,就可以用⑥式计算适合此法测试的电阻范围。

但是,在实际测量的过程中,不一定都能事先知道待测电阻的大概阻值,也不一定很清楚RA和R的大小。为了快速、准确地确定一种较好的接法,这种方法便就是探测法。

其步骤如下:

①将待测电阻R与电流表、电压表如图所示接好,并将电压 表的一根接线K空出;

②将K先后触碰电流表的两个接线a、b;

③比较两次触碰中两个电表的示数变化情况:若电压表读数变化显著,说明电流表分压作用明显,应使用外接法,K接a;若电流表示数变化显著,说明电压表的分流作用明显,应使用内接法,K接b。

总之,用“伏安法”测量未知电阻,应当结合电表的参数及待测电阻的大小选择恰当的电路接法,以便减少系统误差,或对系统误差进行修正,以便我们能真正的达到实验目的。

[参考文献]

1、《大学物理实验》 武汉理工大学出版社

2、《物理实验参考书》 教育社出

关于这个建议去硬之城官网看看哦,能快速解决问题 服务态度又好这个很多地方都做不到的。

系统误差带来的不确定度属于什么不确定度

消除系统误差的方法有:交换法、替代法、补偿法、对称测量法、半周期偶数测量法、组合测量法。

1、交换法:在测量中将某些条件,如被测物的位置相互交换,使产生系统误差的原因对测量结果起相反作用,从而达到抵消系统误差的目的。

2、替代法:替代法要求进行两次测量,第一次对被测量进行测量,达到平衡后,在不改变测量条件情况下,立即用一个已知标准值替代被测量,如果测量装置还能达到平衡,则被测量就等于已知标准值。如果不能达到平衡,修整使之平衡,这时可得到被测量与标准值的差值,即:被测量=标准值 差值。

3、补偿法:补偿法要求进行两次测量,改变测量中某些条件,使两次测量结果中,得到误差值大小相等、符号相反,取这两次测量的算术平均值作为测量结果,从而抵消系统误差。

4、对称测量法:即在对被测量进行测量的前后,对称地分别对同一已知量进行测量,将对已知量两次测得的平均值与被测量的测得值进行比较,便可得到消除线性系统误差的测量结果。

5、半周期偶数测量法:对于周期性的系统误差,可以采用半周期偶数观察法,即每经过半个周期进行偶数次观察的方法来消除。

6、组合测量法:由于按复杂规律变化的系统误差,不易分析,采用组合测量法可使系统误差以尽可能多的方式出现在测得值中,从而将系统误差变为随机误差处理。

百度百科-系统误差

系统误差包括哪几类

系统误差带来的不确定度属于什么不确定度?A类标准不确定度。

系统误差,是指一种非随机性误差。如违反随机原则的偏向性误差,在抽样中由登记记录造成的误差等。它使总体特征值在样本中变得过高或过低。

产生原因主要有:(1)所抽取的样本不符合研究任务;(2) 不了解总体分布的性质选择了可能曲解总体分布的抽样程序;(3)有意识地选择最方便的和解决问题最有利的总体元素,但这些元素并不代表总体(例如只对先进企业进行抽样)。这类误差只要事先作好充分准备,是可以避免的。

原理:

相同待测量大量重复测量的平均结果和待测量真值的差。一般而言,由于测量步骤的不尽完善会引起测量结果的误差,其中有的来自系统误差,有的来自随机误差。随机误差被假设来自无法预测的影响量或影响的随机的时间和空间变异。一些系统误差可以消除,通常可以降低,如果系统来自影响量对测量结果的可辨识效应。

系统误差有下列情况:误读、误算、视差、刻度误差、磨损误差、接触力误差、挠曲误差、余弦误差、阿贝误差、热变形误差等。

系统误差的特点是测量结果向一个方向偏离,其数值按一定规律变化,具有重复性、单向性。我们应根据具体的实验条件,系统误差的特点,找出产生系统误差的主要原因,采取适当措施降低它的影响。

系统误差和偶然误差有什么不同?在测量工作中对这两种误差应如何处理?

这种情况包括理论误差、仪器误差、环境误差。

1、理论误差:是由于测量原理或测量方法本身的局限性引起的。例如,在使用某种数学公式或物理模型进行计算时,可能忽略了某些次要因素,导致计算结果与实际值之间存在偏差。这种误差通常可以通过改进测量方法或采用更精确的模型来减小。

2、仪器误差:是由于测量仪器的不完善或校准不准确所引起的。例如,在使用天平进行质量测量时,天平的灵敏度可能不足,导致对微小质量的测量不准确。此外,仪器的制造误差、使用过程中的磨损以及校准过程中的误差都可能导致仪器误差。为了减小仪器误差,需要定期对仪器进行校准和维护,并选择适合测量需求的仪器。

3、环境误差:是由于测量环境的不稳定或干扰因素引起的。例如,在进行温度测量时,如果测量环境中有强烈的热源或冷源,可能导致温度传感器的读数偏离实际值。此外,电磁干扰、振动等因素也可能对测量结果产生影响。为了减小环境误差,需要选择适当的测量地点和环境条件,并采取必要的屏蔽和隔振措施。

降低分层处理的误差措施有哪三种

系统误差是由实验原理和测量工具的准确程度造成的。处理方法完善实验原理,改进实验方法,选用更精密的测量仪器。

偶然误差是由人的因素造成的。处理方法多次测量取平均值。

系统误差总是同样地偏大或偏小。而偶然误差有时偏大有时偏小。

电子测量原理的内容提要

系统误差、随机误差、测量误差。

1、系统误差:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差称为系统误差。系统误差的特点是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化,减小系统误差的方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。

2、随机误差:随机误差又叫偶然误差,即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差,称为随机误差。随机误差的特点是对同一测量对象多次重复测量,所得测量结果的误差呈现无规则涨落,既可能为正(测量结果偏大),也可能为负(测量结果偏小),且误差绝对值起伏无规则.但误差的分布服从统计规律,表现出以下三个特点:单峰性,即误差小的多于误差大的;对称性,即正误差与负误差概率相等;有界性,即误差很大的概率几乎为零。

3、测量误差:在直接测量过程中由于所使用的测量工具不准确,测量方法的不完善,都使得测量结果不准确,以至于偏离真实值,这就是误差。在间接测量中由于直接测量的结果有误差,此误差可传递到最后的结果中,也可使其偏离真实值。随机误差的特点是对同一测量对象多次重复测量,所得测量结果的误差呈现无规则涨落,既可能为正(测量结果偏大),也可能为负(测量结果偏小),且误差绝对值起伏无规则.但误差的分布服从统计规律,表现出以下三个特点:单峰性,即误差小的多于误差大的;对称性,即正误差与负误差概率相等;有界性,即误差很大的概率几乎为零。

什么是误差?

《电子测量原理》阐述电子测量的基本原理、测量误差和实际应用。《电子测量原理》包括6篇:第1篇测量总论及误差理论,介绍测量的基本概念、技术方法及系统组成,误差理论和数据处理等。第2篇基本电参量测量,包括频率、电压、阻抗等参量测量的内容。第3篇时域测量,以示波器为背景介绍时域信号皮形的采集、显示及应用技术。第4篇频域测量、重点讨论频域中的信号频道和网络性能的测量,介绍测量激励信号源的基本工作原理。第5篇数据域测试,介绍数字系统的基本测试原理和方法,包括数字信号的产生、逻辑分析、可测性设计及数字系统测试的典型实例。第6篇测试系统集成技术,阐述组建测试系统的硬件平台、软件平台、总线标准、通信技术等。

电子测量技术是在各学科专业中获得广泛应用的一门通用技术。《电子测量原理》不仅可作为理工科本科、专科院校的电子信息类专业的电子测量课程教材,也可供非电专业学生学习,还可供广大科研和工程技术人员参考。对《电子测量原理》内容适当删选,可作为各类成人职业教育的教材。

《电子测量原理》着重体系结构的科学合理性,力求概念清晰,推导严密,阐述精辟;突出先进性和创新性,充分反映了现代电子测量理论和最新技术成果

偶然误差和系统误差有什么区别?

误差是测量测得的量值减去参考量值。

测得的量值简称测得值,,代表测量结果的量值。所谓参考量值,一般由量的真值或约定量值来表示。 对于测量而言,人们往往把一个量在被观测时,其本身所具有的真实大小认为是被测量的真值。

实际上,它是一个理想的概念。因为只有“当某量被完善地确定并能排除所有测量上的缺陷时,通过测量所得到的量值”才是量的真值。从测量的角度来说,难以做到这一点,因此,一般说来,真值不可能确切获知。

扩展资料:

误差分类:

1,模型误差:

在建立数学模型过程中,要将复杂的现象抽象归结为数学模型,往往要忽略一些次要因素的影响,对问题作一些简化。因此数学模型和实际问题有一定的误差,这种误差称为模型误差。

2,测量误差

在建模和具体运算过程中所用的数据往往是通过观察和测量得到的,由于精度的限制,这些数据一般是近似的,即有误差,这种误差称为测量误差。

3,截断误差

由于实际运算只能完成有限项或有限步运算,因此要将有些需用极限或无穷过程进行的运算有限化,对无穷过程进行截断,这样产生的误差成为截断误差。

4,舍入误差

在数值计算过程中,由于计算工具的限制,我们往往对一些数进行四舍五入,只保留前几位数作为该数的近似值,这种由舍入产生的误差成为舍入误差。

5,抽样误差

抽样误差:是指样本指标和总体指标之间数量上的差别,例如抽样平均数与总体平均数之差 、抽样成数与总体成数之差(p-P)等。抽样调查中的误差有两个来源,分别为:

(1)登记性误差,即在调查过程中,由于主客观原因而引起的误差。

(2)代表性误差,即样本各单位的结构情况不足以代表总体特征而引起的误差。

参考资料:

百度百科---误差

物理实验中系统误差与偶然误差的区别?

偶然误差也称为随机误差,与系统误差的主要区别如下:

一、产生原因不同

1、随机误差:其产生的原因是分析过程中种种不稳定随机因素的影响,如室温、相对湿度和气压等环境条件的不稳定。

2、系统误差:所抽取的样本不符合研究任务;不了解总体分布的性质选择了可能曲解总体分布的抽样程序;有意识地选择最方便的和解决问题最有利的总体元素,但这些元素并不代表总体(例如只对先进企业进行抽样)。

二、表达意思不同

1、随机误差:是由于在测定过程中一系列有关因素微小的随机波动而形成的具有相互抵偿性的误差。

2、系统误差:指一种非随机性误差。如违反随机原则的偏向性误差,在抽样中由登记记录造成的误差等。

三、特点不同

1、随机误差:其绝对值和符号均不可预知。

2、系统误差:重复性、单向性、可测性。

百度百科-随机误差

百度百科-系统误差

一、特点不同

1、系统误差

重复性、单向性、可测性。

2、偶然误差

即使测试系统的灵敏度足够高,在相同的测量条件下,对同一量值进行多次等精度测量时,仍会有各种偶然的,无法预测的不确定因素干扰而产生测量误差,其绝对值和符号均不可预知。

虽然单次测量的随机误差没有规律,但多次测量的总体却服从统计规律,通过对测量数据的统计处理,能在理论上估计起对测量结果的影响。

二、误差不同

1、系统误差

系统误差,是指一种非随机性误差。如违反随机原则的偏向性误差,在抽样中由登记记录造成的误差等。它使总体特征值在样本中变得过高或过低。

2、偶然误差

随机误差也称为偶然误差和不定误差,是由于在测定过程中一系列有关因素微小的随机波动而形成的具有相互抵偿性的误差。

三、产生因素不同

1、系统误差

(1)所抽取的样本不符合研究任务。

(2) 不了解总体分布的性质选择了可能曲解总体分布的抽样程序。

(3)有意识地选择最方便的和解决问题最有利的总体元素,但这些元素并不代表总体(例如只对先进企业进行抽样)。这类误差只要事先作好充分准备,是可以避免的。

2、偶然误差

其产生因素十分复杂,如电磁场的,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员的感觉器官的生理变化等,以及它们的综合影响都可以成为产生随机误差的因素。

百度百科-系统误差

百度百科-偶然误差