1.未来计算机发展的展望

2.纳米材料被研究用来制造什么?

3.电脑是哪一年发明的

4.量子电脑会取代硅芯片电脑吗?

5.信息技术在未来的发展趋势

6.人类还未诞生,就出现了2.5亿年前的电脑芯片,是谁留下的?

7.电脑的发展史?

8.计算机发展趋势

人类多久能创造一个虚拟世界,人类多久可以造出电脑系统的芯片

发展历史

(1)大型主机阶段

20世纪40-50年代,是第一代电子管计算机。经历了电子管数字计算机、晶体管数字计算机、集成电路数字计算机和大规模集成电路数字计算机的发展历程,计算机技术逐渐走向成熟。;

(2)小型计算机阶段

20世纪60-70年代,是对大型主机进行的第一次“缩小化”,可以满足中小企业事业单位的信息处理要求,成本较低,价格可被接受;

(3)微型计算机阶段

20世纪70-80年代,是对大型主机进行的第二次“缩小化”,16年美国苹果公司成立,17年就推出了AppleII计算机,大获成功。1981年IBM推出IBM-PC,此后它经历了若干代的演进,占领了个人计算机市场,使得个人计算机得到了很大的普及;

(4)客户机/服务器

即C/S阶段。随着1964年IBM与美国航空公司建立了第一个全球联机订票系统,把美国当时2000多个订票的终端用电话线连接在了一起,标志着计算机进入了客户机/服务器阶段,这种模式至今仍在大量使用。在客户机/服务器网络中,服务器是网络的核心,而客户机是网络的基础,客户机依靠服务器获得所需要的网络,而服务器为客户机提供网络必须的。C/S结构的优点是能充分发挥客户端PC的处理能力,很多工作可以在客户端处理后再提交给服务器,大大减轻了服务器的压力;

(5)Internet阶段

也称互联网、因特网、网际网阶段。互联网即广域网、局域网及单机按照一定的通讯协议组成的国际计算机网络。互联网始于1969年,是在ARPA(美国国防部研究署)制定的协定下将美国西南部的大学(UCLA(加利福尼亚大学洛杉矶分校)、Stanford Research Institute(史坦福大学研究学院)、UCSB(加利福尼亚大学)和University of Utah(犹他州大学))的四台主要的计算机连接起来。此后经历了文本到,到现在语音、等阶段,宽带越来越快,功能越来越强。互联网的特征是:全球性、海量性、匿名性、交互性、成长性、扁平性、即时性、多媒体性、成瘾性、喧哗性。互联网的意义不应低估。它是人类迈向地球村坚实的一步;

(6)云计算时代

从2008年起,云计算(Cloud Computing)概念逐渐流行起来,它正在成为一个通俗和大众化(Popular)的词语。云计算被视为“革命性的计算模型”,因为它使得超级计算能力通过互联网自由流通成为了可能。企业与个人用户无需再投入昂贵的硬件购置成本,只需要通过互联网来购买租赁计算力,用户只用为自己需要的功能付钱,同时消除传统软件在硬件,软件,专业技能方面的花费。云计算让用户脱离技术与部署上的复杂性而获得应用。云计算囊括了开发、架构、负载平衡和商业模式等,是软件业的未来模式。它基于Web的服务,也是以互联网为中心。

未来计算机发展的展望

第一台计算机(ENIAC)于1946年2月,在美国诞生。提出程序存储的是美国的数学家 冯^诺依曼, 在美国陆军部的资助下,与1943年开始了ENIAC的研制,1946年完成; 一、机械计算机的诞生 在西欧,由中世纪进入文艺复兴时期的社会大变革,极大地促进了自然科学技术的发展,人们长期被神权压抑的创造力得到了空前的释放 。而在这些思想创意的火花中 ,制造一台能帮助人进行计算的机器则是最耀眼、最夺目的一朵。从那时起,一个又一个科学家为了实现这一伟大的梦想而不懈努力着。但限于当时的科技水平,多数试验性的创造都以失败而告终,这也就昭示了拓荒者的共同命运: 往往在倒下去之前见不到自己努力的成果。而后人在享用这些甜美成果的时候,往往能够从中品味出汗水与泪水交织的滋味…… 1614 年:苏格兰人John Napier(1550 ~1617 年)发表了一篇论文 ,其中提到他发明了一种可以进行四则运算和方根运算的精巧装置。 1623 年:Wilhelm Schickard(1592 ~1635 年)制作了一个能进行6 位数以内加减法运算,并能通过铃声输出答案的“计算钟”。该装置通过转动齿轮来进行操作。 1625 年:William Oughtred(1575 ~1660 年)发明计算尺。 1668 年:英国人Samuel Morl(1625 ~1695 年)制作了一个非十进制的加法装置,适宜计算钱币。 1671 年:德国数学家Gottfried Leibniz 设计了一架可以进行乘法运算,最终答案长度可达16位的计算工具。 1822 年:英国人Charles Babbage(1792 ~1871 年)设计了差分机和分析机 ,其设计理论非常超前,类似于百年后的电子计算机,特别是利用卡片输入程序和数据的设计被后人所用。 1834 年:Babbage 设想制造一台通用分析机,在只读存储器(穿孔卡片)中存储程序和数据 。Babbage在以后的时间里继续他的研究工作,并于1840 年将操作位数提高到了40 位,并基本实现了控制中心(CPU)和存储程序的设想,而且程序可以根据条件进行跳转,能在几秒内做出一般的加法,几分钟内做出乘、除法。 1848 年:英国数学家George Boole 创立二进制代数学,提前近一个世纪为现代二进制计算机的发展铺平了道路。 1890 年:美国人口普查部门希望能得到一台机器帮助提高普查效率。Herman Hollerith (后来他的公司发展成了IBM 公司)借鉴Babbage 的发明,用穿孔卡片存储数据,并设计了机器。结果仅用6 周就得出了准确的人口统计数据(如果用人工方法,大概要花10 年时间)。 1896 年:Herman Hollerith 创办了IBM 公司的前身。 二、电子计算机问世 在以机械方式运行的计算器诞生百年之后,随着电子技术的突飞猛进,计算机开始了真正意义上的由机械向电子时代的过渡,电子器件逐渐演变成为计算机的主体,而机械部件则渐渐处于从属位置。二者地位发生转化的时候,计算机也正式开始了由量到质的转变,由此导致电子计算机正式问世。下面就是这一过渡时期的主要: 1906 年:美国人Lee De Forest 发明电子管,为电子计算机的发展奠定了基础。 1924 年2 月:IBM 公司成立,从此一个具有划时代意义的公司诞生。 1935 年:IBM 推出IBM 601 机。这是一台能在一秒钟内算出乘法的穿孔卡片计算机 。这台机器无论在自然科学还是在商业应用上都具有重要的地位,大约制造了1500 台。 1937 年:英国剑桥大学的Alan M.Turing(1912 ~1954 年)出版了他的论文 ,并提出了被后人称之为“图灵机”的数学模型。 1937 年:Bell 试验室的George Stibitz 展示了用继电器表示二进制的装置。尽管仅仅是个展示品,但却是第一台二进制电子计算机。 1940 年1 月:Bell 实验室的Samuel Williams 和Stibitz 制造成功了一个能进行复杂运算的计算机。该机器大量使用了继电器,并借鉴了一些电话技术,用了先进的编码技术。 1941 年夏季:Atanasoff 和学生Berry 完成了能解线性代数方程的计算机,取名叫“ABC ”(Atanasoff-Berry Computer),用电容作存储器 ,用穿孔卡片作存储器 ,那些孔实际上是“烧”上去的,时钟频率是60Hz,完成一次加法运算用时一秒。 1943 年1 月:Mark I 自动顺序控制计算机在美国研制成功。整个机器有51 英尺长 、5 吨重 、75万个零部件。该机使用了3304 个继电器 ,60 个开关作为机械只读存储器 。程序存储在纸带上 ,数据可以来自纸带或卡片阅读器。Mark I 被用来为美国海军计算弹道火力表。 1943 年9 月:Williams 和Stibitz 完成了“Relay Interpolator ”,后来命名为“ModelⅡ Re-lay Calculator ”的计算机。这是一台可编程计算机,同样使用纸带输入程序和数据。它运行更可靠,每个数用7 个继电器表示,可进行浮点运算。 1946 年:ENIAC(Electronic Numerical Integrator And Computer)诞生 ,这是第一台真正意义上的数字电子计算机。开始研制于1943 年,完成于1946 年,负责人是John W.Mauchly 和J.Presper Eckert,重30 吨,用了18000 个电子管,功率25 千瓦,主要用于计算弹道和氢弹的研制。 三、晶体管计算机的发展 真空管时代的计算机尽管已经步入了现代计算机的范畴,但因其体积大、能耗高、故障多、价格贵,从而制约了它的普及和应用。直到晶体管被发明出来,电子计算机才找到了腾飞的起点。 1947 年:Bell 实验室的William B.Shockley 、 John Bardeen 和Walter H.Brattain 发明了晶体管,开辟了电子时代新纪元。 1949 年:剑桥大学的Wilkes 和他的小组制成了一台可以存储程序的计算机,输入输出设备仍是纸带。 1949 年:EDVAC(Electronic Discrete Variable Automatic Computer——电子离散变量自动计算机)——第一台使用磁带的计算机。这是一个突破,可以多次在磁带上存储程序。这台机器是John von Neumann 提议建造的。 1950 年:日本东京帝国大学的Yoshiro Nakamats 发明了软磁盘 ,其销售权由IBM公司获得 。由此开创了存储时代的新纪元。 1951 年:Grace Murray Hopper 完成了高级语言编译器。 1951 年:UNIVAC-1 ——第一台商用计算机系统诞生,设计者是J.Presper Eckert 和JohnMauchly 。被美国人口普查部门用于人口普查,标志着计算机进入了商业应用时代。 1953 年:磁芯存储器被开发出来。 1954 年:IBM 的John Backus 和他的研究小组开始开发FORTRAN(FORmula TRANslation) ,1957 年完成。这是一种适合科学研究使用的计算机高级语言。 1957 年:IBM 开发成功第一台点阵式打印机。 四、集成电路为现代计算机铺平道路 尽管晶体管的用大大缩小了计算机的体积、降低了价格 、减少了故障 ,但离用户的实际要求仍相距甚远,而且各行业对计算机也产生了较大的需求,生产性能更强、重量更轻、价格更 低的机器成了当务之急。集成电路的发明解决了这个问题。高集成度不仅使计算机的体积得以减小,也使速度加快、故障减少。从此,人们开始制造革命性的微处理器。 1958 年9 月12 日:在Robert Noyce(Intel 公司创始人)的领导下,集成电路诞生 ,不久又发明了微处理器。但因为在发明微处理器时借鉴了日本公司的技术,所以日本对其专利不承认,因为日本没有得到应有的利益。过了30 年,日本才承认,这样日本公司可以从中得到一部分利润。但到2001 年,这个专利就失效了。 1959 年:Grace Murray Hopper 开始开发COBOL(COmmon Business-Oriented Language)语言 ,完成于1961 年。 1960 年:ALGOL ——第一个结构化程序设计语言推出。 1961 年:IBM 的Kennth Iverson 推出APL 编程语言。 1963 年:DEC 公司推出第一台小型计算机——PDP-8 。 1964 年:IBM 发布PL/1 编程语言。 1964 年:发布IBM 360 首套系列兼容机。 1964 年:DEC 发布PDB-8 小型计算机。 1965 年:摩尔定律发表,处理器的晶体管数量每18 个月增加一倍,价格下降一半。 1965 年:Lofti Zadeh 创立模糊逻辑,用来处理近似值问题。 1965 年:Thomas E.Kurtz 和John Kemeny 完成BASIC(Beginner ’s All-purpose SymbolicIn-struction Code)语言的开发。特别适合计算机教育和初学者使用,得以广泛推广。 1965 年:Douglas Englebart 提出鼠标器的设想,但没有进一步研究,直到1983年才被苹果电脑公司大量用。 1965 年:第一台超级计算机CD6600 开发成功。 1967 年:Niklaus Wirth 开始开发PASCAL 语言,11 年完成。 1968 年:Robert Noyce 和他的几个朋友创办了Intel 公司。 1968 年:Seymour Paper 和他的研究小组在MIT 开发了LOGO 语言。 1969 年:ARPANet(Advanced Research Projects Agency Network)开始启动,这是现代Internet 的雏形。 1969 年4 月7 日:第一个网络协议标准RFC 推出。 10 年:第一块RAM 芯片由Intel 推出,容量1KB 。 10 年:Ken Thomson 和Dennis Ritchie 开始开发UNIX 操作系统。 10 年:Forth 编程语言开发完成。 10 年:Internet 的雏形ARPANet 基本完成,开始向非军用部门开放。 11 年11 月15 日:Marcian E.Hoff 在Intel 公司开发成功第一块微处理器4004,含2300个晶体管,字长为4 位,时钟频率为108KHz,每秒执行6 万条指令。 12 年:12 年以后的计算机习惯上被称为第四代计算机。基于大规模集成电路及后来的超大规模集成电路。这一时期的计算机功能更强,体积更小。此时人们开始怀疑计算机能否继续缩小,特别是发热量问题能否解决。同时,人们开始探讨第五代计算机的开发。 12 年:C 语言开发完成。其主要设计者是UNIX 系统的开发者之一Dennis Ritche。这是一个非常强大的语言,特别受人喜爱。 12 年:Hewlett-Packard 发明了第一个手持计算器。 12 年4 月1 日:Intel 推出8008 微处理器。 12 年:ARPANet 开始走向世界,Internet 革命拉开序幕。 13 年:街机游戏Pong 发布,得到广泛欢迎。发明者是Nolan Bushnell(Atari 的创立者)。 14 年:第一个具有并行计算机体系结构的CLIP-4 推出。 五、当代计算机技术渐入辉煌 在此之前,应该说计算机技术还是主要集中于大型机和小型机领域的发展。随着超大规模集成电路和微处理器技术的进步,计算机进入寻常百姓家的技术障碍逐渐被突破。特别是在Intel公司发布了其面向个人用户的微处理器8080 之后,这一浪潮终于汹涌澎湃起来,同时也催生出了一大批信息时代的弄潮儿,如Stephen Jobs(史缔芬?6?1乔布斯)、Bill Gates(比尔?6?1盖茨)等 ,至今他们对整个计算机产业的发展还起着举足轻重的作用。在此时段,互联网技术和多媒体技术也得到了空前的应用与发展,计算机真正开始改变我们的生活。 14 年4 月1 日:Intel 发布其8 位微处理器芯片8080 。 15 年:Bill Gates 和Paul Allen 完成了第一个在MIT(麻省理工学院)的Altair 计算机上运行的BASIC 程序。 15 年:Bill Gates 和Paul Allen 创办Microsoft 公司(现已成为全球最大、最成功的软件公司)。3 年后就收入50 万美元,员工增加到15 人。1992 年达28 亿美元,1 万名雇员。1981年Microsoft为IBM 的PC 机开发操作系统,从此奠定了在计算机软件领域的领导地位。 16 年:Stephen Wozinak 和Stephen Jobs 创办苹果计算机公司,并推出其Apple Ⅰ计算机。 18 年6 月8 日:Intel 发布其16 位微处理器8086 。19 年6 月又推出准16 位的8088 来 满足市场对低价处理器的需要,并被IBM 的第一代PC 机所用。该处理器的时钟频率为4.77MHz 、8MHz和10MHz,大约有300 条指令,集成了29000 个晶体管。 19 年:低密软磁盘诞生。 19 年:IBM 公司眼看个人计算机市场被苹果等电脑公司占有,决定开发自己的个人计算机 。为了尽快推出自己的产品,IBM 将大量工作交给第三方来完成(其中微软公司就承担了操作系统的开发工作 ,这同时也为微软后来的崛起奠定了基础),于1981 年8 月12 日推出了IBM- PC 。 1980 年:“只要有1 兆内存就足够DOS 尽情表演了”,微软公司开发DOS 初期时说 。今天来听这句话有何感想呢? 1981 年:Xerox 开始致力于图形用户界面、图标、菜单和定位设备(如鼠标)的研制 。结果研究成果为苹果所借鉴,而苹果电脑公司后来又指控微软剽窃了他们的设计,开发了Windows 系列软件。 1981 年8 月12 日:MS-DOS 1.0 和PC-DOS 1.0 发布。Microsoft 受IBM 的委托开发DOS 操作系统,他们从Tim Paterson 那里购买了一个叫86-DOS 的程序并加以改进。由IBM 销售的版本叫PC-DOS,由Microsoft 销售的叫MS-DOS 。Microsoft 与IBM 的合作一直到1991 年的DOS 5.0 为止。最初的DOS 1.0非常简陋,每张盘上只有一个根目录,不支持子目录,直到1983 年3 月的2.0 版才有所改观。MS-DOS在1995 年以前一直是与IBM-PC 兼容的操作系统,Windows 95 推出并迅速占领市场之后,其最后一个版本命名为DOS 7.0 。 1982 年:基于TCP/IP 协议的Internet 初具规模。 1982 年2 月:80286 发布,时钟频率提高到20MHz 、增加了保护模式、可访问16MB 内存、支持1GB以上的虚拟内存、每秒执行270 万条指令、集成了13.4 万个晶体管。 1983 年春季:IBM XT 机发布,增加了10MB 硬盘、128KB 内存、一个软驱、单色显示器、一台打印机、可以增加一个8087 数字协处理器。当时的价格为5000 美元。 1983 年3 月:MS-DOS 2.0 和PC-DOS 2.0 增加了类似UNIX 分层目录的管理形式。 年:DNS(Domain Name Server)域名服务器发布,互联网上有1000 多台主机运行。 年底:Compaq 开始开发IDE 接口,能以更快的速度传输数据,并被许多同行纳,后来在此基础上开发出了性能更好的EIDE 接口。 1985 年:Philips 和SONY 合作推出CD-ROM 驱动器。 1985 年10 月17 日:80386 DX 推出 。时钟频率达到33MHz 、可寻址1GB 内存 、每秒可执行600万条指令、集成了275000 个晶体管。 1985 年11 月:Microsoft Windows 发布。该操作系统需要DOS 的支持,类似苹果机的操作界面 ,以致被苹果控告,该诉讼到19 年8 月才终止。 1985 年12 月:MS-DOS 3.2 和PC-DOS 3.2 发布。这是第一个支持3.5 英寸磁盘的系统,但只支持到720KB,3.3 版才支持1.44MB 。 1987 年:Microsoft Windows 2.0 发布。 1988 年:EISA 标准建立。 1989 年:欧洲物理粒子研究所的Tim Berners-Lee 创立World Wide Web 雏形。通过超文本链接,新手也可以轻松上网浏览。这大大促进了Internet 的发展。 1989 年3 月:EIDE 标准确立,可以支持超过528MB 的硬盘,能达到33.3MB/s 的传输速度,并被许多CD-ROM 所用。 1989 年4 月10 日:80486 DX 发布。该处理器集成了120 万个晶体管,其后继型号的时钟频率达到100MHz 。 1989 年11 月:Sound Blaster Card(声卡)发布。 1990 年5 月22 日:微软发布Windows 3.0,兼容MS-DOS 模式。 1990 年11 月:第一代MPC(多媒体个人电脑标准)发布。该标准要求处理器至少为80286/12MHz(后来增加到80386SX/16MHz)及一个光驱,至少150KB/sec 的传输率。 1991 年:ISA 标准发布。 1991 年6 月:MS-DOS 5.0 和PC-DOS 5.0 发布。为了促进OS/2 的发展,Bill Gates 说DOS5.0 是 DOS 终结者,今后将不再花精力于此。该版本突破了640KB 的基本内存限制。这个版本也标志着微软与IBM 在DOS 上合作的终结。 1992 年:Windows NT 发布,可寻址2GB 内存。 1992 年4 月:Windows 3.1 发布。 1993 年:Internet 开始商业化运行。 1993 年:经典游戏Doom 发布。 1993 年3 月22 日:Pentium 发布,该处理器集成了300 多万个晶体管、早期版本的核心频率为60 ~66MHz 、每秒钟执行1 亿条指令。 1993 年5 月:MPC 标准2 发布,要求CD-ROM 传输率达到300KB/s,在320 ×240 的窗口中每秒播放15 帧图像。 1994 年3 月7 日:Intel 发布90 ~100MHz Pentium 处理器。 1994 年:Netscape 1.0 浏览器发布。 1994 年:著名的即时战略游戏Command&Conquer(命令与征服)发布。 1995 年3 月27 日:Intel 发布120MHz 的Pentium 处理器。 1995 年6 月1 日:Intel 发布133MHz 的Pentium 处理器。 1995 年8 月23 日:纯32 位的多任务操作系统Windows 95 发布。该操作系统大大不同于以前的版本 ,完全脱离MS-DOS,但为照顾用户习惯还保留了DOS 模式。Windows 95 取得了巨大成功。 1995 年11 月1 日:Pentium Pro 发布,主频可达200MHz 、每秒可执行4.4 亿条指令、集成了550万个晶体管。 1995 年12 月:Netscape 发布其JaScript 。 1996 年1 月:Netscape Nigator 2.0 发布。这是第一个支持JaScript 的浏览器。 1996 年1 月4 日:Intel 发布150 ~166MHz 的Pentium 处理器,集成了310 ~330 万个晶体管。 1996 年:Windows 95 OSR2 发布,修正了部分BUG,扩充了部分功能。 19 年:Heft Auto 、Quake 2 和Blade Runner 等著名游戏软件发布,并带动3D图形加速卡迅速崛起。 19 年1 月8 日:Intel 发布Pentium MMX CPU,处理器的游戏和多媒体功能得到增强。 19 年4 月:IBM 的深蓝(Deep Blue)计算机战胜人类国际象棋世界冠军卡斯帕罗夫。 19 年5 月7 日:Intel 发布Pentium Ⅱ,增加了更多的指令和Cache 。 19 年6 月2 日:Intel 发布233MHz Pentium MMX 。 1998 年2 月:Intel 发布333MHz Pentium Ⅱ处理器,用0.25 μm 工艺制造,在速度提升的同时减少了发热量。 1998 年6 月25 日:Microsoft 发布Windows 98,一些人企图肢解微软,微软回击说这会伤害美国的国家利益。 1999 年1 月25 日:Linux Kernel 2.2.0 发布,人们对其寄予厚望。 1999 年2 月22 日:AMD 公司发布K6-3 400MHz 处理器。 1999 年7 月:Pentium Ⅲ发布,最初时钟频率在450MHz 以上,总线速度在100MHz 以上,用0.25μm 工艺制造,支持SSE 多媒体指令集,集成有512KB 以上的二级缓存。 1999 年10 月25 日:代号为Coppermine(铜矿)的Pentium Ⅲ处理器发布。用0.18 μm 工艺制造的Coppermine 芯片内核尺寸进一步缩小,虽然内部集成了256KB 全速On-Die L2 Cache ,内建2800万个晶体管,但其尺寸却只有106 平方毫米。 2000 年3 月:Intel 发布代号为“Coppermine 128 ”的新一代的Celeron 处理器。新款Celeron 与老Celeron 处理器最显著的区别就在于用了与新P Ⅲ处理器相同的Coppermine核心及同样的FC-PGA封装方式,同时支持SSE 多媒体扩展指令集。

纳米材料被研究用来制造什么?

内容提要: 科技高速发展,万象日益更新。在这个分秒之中便呈现新世界的当代,未来总在人类智慧的探索、创新与改变中渐渐地展露出其清晰的面目。计算机作为人类高度智慧结晶的产物,其可预测的发展方向更是每个人所关注的焦点。下面我就计算机元件构成材料的跨越、体积大小的突破、人工智能的参与、悄然到来的半机械人时代等方面谈谈对未来计算机发展的展望。

关键词: 未来计算机发展的展望;计算机元件构成材料的跨越;计算体积大小的突破;人工智能的参与;悄然来临的半机械人时代

元件构成材料的跨越:

目前,计算机元件如电容、晶体管、游丝、发条等,其主要构成为Ge、Si、Ins、InSb、GeAs、InAs、InAsP以及多层半导体异质结构量子阱等材料,而材料的运用对元件的体积、结构、重量、寿命、安装便捷程度、功耗、频率,以及抗污染或腐蚀等方面起着决定性作用。若要在计算机的体积、传输速度、耗电量、韧性上取得进一步突破,新型材料的运用就显得十分重要了。

目前,科学家已经制造出世界上最小的计算机逻辑电路,也就是一个由单分子碳组成的双晶体管元件,而构成这一个双晶体管的材料为碳纳米管,一个比头发丝还细十万倍的中空管体。碳纳米管是自然界中最坚韧的物质,比钢还要坚韧十倍,而且它还具有超强的半导体能力,未来计算机的应用上最可能取代硅,成为制造电脑芯片的主要材料,用碳纳米管做成的芯片要比传统的芯片速度高出五倍之多,将来利用碳纳米管技术制造的微处理器会使计算机变得更小、速度更快、更加节能。碳纳米管的运用和推广会直接引发计算机的巨大突破,可能由此衍生出三维计算机,出现透明的三维电脑桌面系统,可以让人们以操作普通桌面上实物的方式操作网页、文档和资料,并借助手势和眼球活动实现更为复杂的功能。借助这样的互动技术和可视技术将延展传统电脑界面桌面功能,让人们从二维屏幕自然过渡到三维世界。总之,当基本材料硅被碳纳米管取代时,未来计算机机会更小、更快、更便宜,能完成很多以前无法做到的任务,进一步提高计算机的性能。

可能发生的由于硅的物理特性而导致目前普遍使用的硅晶体管制造技术达到发展极限,从而难以继续的困境,将会随着碳纳米管时代的到来而迎刃而解。未来计算机将会向更高、更快的方向迈进。

体积大小的突破:

目前,“膝上机”---笔记本电脑成为了商务办公,学习研究的标配;“掌上机”---可握在手的计算机成为了流动作业,家庭的必备。当我们惊异于计算机体积的极速缩小,便捷于生产生活的同时,随着晶体管,甚至微型晶体管的出现与运用,未来计算机如指甲般大小的时代正悄然来临。

引发计算机体积如指甲大小跨越的强力推手,便是名为鳍式效晶体管的新式互补金属氧化物半导体晶体管,其长度小于25毫微米,未来可进一步缩小到大约人类头发宽度的一万分之一。这半导体技术上的一大突破,成为未来晶体片设计师将超级电脑设计成指甲大小的绝对利器。

由此观之,所谓计算机的突破以及未来发展的种种奇迹,都是基于构成计算机的一个个微小的零部件的升级,一种种现有材料的更新,而这背后又是一个个邻域的不断探索和一代代科学家的前赴后继。计算机的发展成果说到底就是科技潮流发展推动的产物,更是人类智慧结晶的集合体。

计算机能耗的大幅降低:

随着电脑技术的飞速发展,多核芯片的迅速普及,电脑的功耗成倍增长,而在有限的能源下如何去降低功耗这也成为了目前越来越多的人关注的问题。所以目前新标准要想获得更多用户的认可必须向低功耗方向发展。全球的PC数量每年都在飞速增长。每年PC的耗电量也是相当惊人的,即使是每台电脑PC减低1W的幅度,其省电量也是非常可观的。

所以,在低能耗的呼吁下,DDR已经被历史所全面淘汰,DDR2也将成为强弩之末。目前的形式暗示着高能节能的计算机芯片组的到来。这些新的芯片组在节能的同时,还有望解决内存宽带的瓶颈,内存宽带将会大幅提升。

如果将视野从计算机转向整个业界来看,能耗的大大降低会将更多节省的能源用于计算机的进一步开发与创新。相信,未来的计算机领域将会进入超低能耗、超快发展的全新时代。

人工智能的鼎力相助:

人工智能作为计算机科学的一个分支,其深入了解了智能的实质,造就了包括机器人、语言识别、自然语言处理和专家系统等的先进技术。随着理论和技术的日益成熟,其应用领域也不断扩大,未来在人工智能的参与下,有望实现计算机、网络、通信技术的三位一体化,进而衍生出一系列未来超级计算机,下面列举几例:

分子计算机: 分子计算机的运算速度是目前计算机的1000亿倍,最终将会取代硅芯片计算机。

量子计算机: 量子力学证明,个体光子通常不相互作用,但是当它们与光学谐腔内的原子聚在一起时,它们相互之间会产生强烈的影响。光子的这种特性可用来发展量子力学效应的信息处理器件---光学量子逻辑门,进而制造出量子计算机。

DNA计算机: 科学家研究发现,脱氧核糖核酸有一种特性,能够携带生物体的大量基因物质。数学家、生物学家、化学家以及计算机专家从中获得启迪,正在合作研制未来的液晶DNA电脑。

神经元计算机: 将来,人们制造能够完成类似人脑功能的计算机系统,即人造神经元网络。神经元计算机最有前途的应用是国防:它可以识别物体和目标,处理复杂的雷达信号,决定要击毁的目标。神经元计算机的联想式信息存储、对学习的自然适应性、数据处理等性能都异常有效。

生物计算机: 生物计算机主要是以生物电子元件构建的计算机。它利用蛋白质的开关特性,用蛋白质分子作为元件从而制成的生物芯片。其性能是由元件与元件之间的电流启闭开关速度来决定的。由蛋白质构成的集成电路,其运行速度非常快,大大超过了人脑的思维速度。

人类本身就是一个精妙绝伦的艺术品,生物所具有的特性更是未来计算机发展所能参照的最好的范例。由人工智能的大量涌现与不断发展甚至战胜人类的种种事例来看,计算机的发展将更接近人类自身,甚至与人类结合,由此看来,半机械人的时代或将成为现实。

悄然来临的半机械人时代:

半机械人是一种“电子控制的有机体”,也就是说,一种一半是人,一半是机器的生物。人类和智能机械结合在一起,兼备两者的优点,成为半机械人,这已经是现代科技发展的目标之一。

科学家预言,在未来很有可能在人脑中加入人工智能成分,以此来增加它的性能,如更高的记忆,更快的计算速度等等。甚至有可能通过基因工程技术来改变人类的DNA,并且以此来改变人类的外表和行为。人类有可能会拥有可以生长、繁殖、分化、可移动、自我装配、自我测试、自我修复的人工细胞,生物学与计算机将会融合在一起。

当半机械人时代真正来临时,人类现在所面临的衰老、疾病、死亡、寿命极限等问题或许都将得到解决,但与此同时所产生的诸如人口数量、道德等方面的弊端也将会是人类所面临的一项难题。

人类在社会发展中成长,人类的思维在发展中不断尝试,科技的每一次跨越都昭示着人类文明的伟大与优越,灵感的每一次碰撞都绘制着这个日新月异的新时代。比未来更远的未来终将会是人类文明智慧尽情发挥的大舞台,没有难题不可攻破,没有未来不可到达,在一代代人们的开创中,个个未知会变成已知,种种创新会风起云涌。对未来计算机发展的展望,更折射出未来人类科技的走向,当一个个科学领域一步步走向巅峰时,科学之上的科技会超乎我们现在的想像。所以说计算机的发展不会止步,对于计算机的发展也会随着时代的进步而不断地向更高的方向展望,从而实现更高的目标。一切展望都是为了成为现实,让我们共同期待即将来临的计算机新时代吧!

电脑是哪一年发明的

1990年7月,第一届“国际纳米科学技术学术会议”在美国召开了,从此,纳米技术作为一门科学,受到了人类的重视。全世界的科学家都被纳米的“魔力”征服,纷纷投入到这股新兴的研究热潮中。

在很多科幻作家的笔下,纳米材料都被用来生产武器,建造楼房。但在现实当中,人们要实现这样的理想,还需要数十年的努力。不过,总是产生奇迹的计算机领域,这次的表现又与众不同。应用纳米技术研制新型计算机,已经呈现出一丝鼓舞人心的曙光。

美国惠普实验室的科研人员正在应用纳米技术,研制计算机内存上的芯片。这块芯片的体积不过数百个原子的大小,相当于人的头发丝直径的千分之一。一旦他们的研究获得成功,研制和生产其他缩微计算机元件就有了更大的可能性,可穿戴式电脑也会因此取得重大突破。

专家们预测:在今后10年内,现在的芯片生产技术将达到极限,但人们并不需要为此担心。因为和分子计算机、量子计算机、光子计算机一样,纳米技术也为21世纪计算机的发展,指明了新的发展方向。

与现在的芯片制造技术相比,用纳米技术生产芯片,成本可谓十分低廉。因为它既不需要建设超洁净生产车间,也不需要昂贵的实验设备和庞大的生产队伍,只要在实验室里将设计好的分子“混合”在一起,就可以造出芯片。芯片制造商将因此节省数百万美元的生产成本。而芯片的价格也将随之急剧下降。这样,即使是未来的日用电子设备,甚至玩具,也都能够装配上功能强大的纳米微处理器。

科学家们对自己的研究项目信心十足。他们相信只要各方面密切配合,一定能在今后的两年之内,研制出能够容纳16个字节(相当于16个英文字母)数据的分子内存芯片。在这种内存芯片上,将布满纳米级的导线。每两个导线相交的节点,就是一个分子“开关”。这些开关将决定芯片中的信息存储量,并影响通信线路的速度。

量子电脑会取代硅芯片电脑吗?

电脑是是1946年发明的,发明者是约翰·冯·诺依曼。

1946年2月14日,世界上第一台电子计算机ENIAC在美国宾夕法尼亚大学诞生,它的出现具有划时代的伟大意义。从第一台计算机的诞生到现在,计算机技术经历了大型机、微型机及网络阶段。

计算机是20世纪最先进的科学技术发明之一,对人类的生产活动和社会活动产生了极其重要的影响,并以强大的生命力飞速发展。

扩展资料:

电脑的发展趋势:

随着科技的进步,各种计算机技术、网络技术的飞速发展,计算机的发展已经进入了一个快速而又崭新的时代,计算机已经从功能单一、体积较展到了功能复杂、体积微小、网络化等。

计算机的未来充满了变数,性能的大幅度提高是不可置疑的,而实现性能的飞跃却有多种途径。不过性能的大幅提升并不是计算机发展的唯一路线,计算机的发展还应当变得越来越人性化,同时也要注重环保等等。

计算机从出现至今,经历了机器语言、程序语言、简单操作系统和Linux、Macos、BSD、Windows等现代操作系统四代,运行速度也得到了极大的提升,第四代计算机的运算速度已经达到几十亿次每秒。

计算机也由原来的仅供军事科研使用发展到拥有,计算机强大的应用功能,产生了巨大的市场需要,未来计算机性能应向着微型化、网络化、智能化和巨型化的方向发展。

百度百科-计算机(电脑)

信息技术在未来的发展趋势

2000年,IBM公司宣布研制出利用5个原子作为处理器和存储器的量子计算机,即量子电脑。

尔定律,电脑处理器正在变得越来越小,其功能则正在变得越来越强。但是,目前的处理器制造方式预料会在今后10年左右达到极限。现在使用的平版印刷技术无法制造出分子大小的微器件,这促使研究人员尝试利用基因链或通过开发其他微型技术来制造电脑。

量子计算机是一种基于原子所具有的神秘量子物理特性的装置,这些特性使得原子能够通过相互作用起到电脑处理器和存储器的作用。量子计算机的基本元件就是原子和分子。IBM的这台量子计算机被认为是朝着具有超高速运算能力的新一代计算装置迈出的新的一步。它可以用于诸如数据库超高速搜索等方面,还可以用于密码技术上,即密码的编制和破译。IBM公司利用这台量子电脑样机解决了密码技术中的一个典型的数学问题,即求解函数的周期。它可以一次性地解决这一问题的任何例题,而常规电脑需要重复数次才能解决这样的问题。

微电子技术面临挑战,但传统的制造业在挑战面前并不气馁,仍在不断地探索解决问题的新途径。美国电话电报公司的贝尔研究室于1988年研制成功了隧道三极管。这种新型电子器件的基本原理是在两个半导体之间形成一层很薄的绝缘体,其厚度为1~10纳米之间,此时电子会有一定的概率穿越绝缘层。这就是量子隧道效应。一层超薄的绝缘层好像是大山底下的一条隧道,电子可以顺利地从山的这边穿到山的那边。由于巧妙地应用了量子隧道效应,所以器件的尺寸比目前的集成电路小100倍,而运算速度提高1000倍,功率损耗只有传统晶体管的千分之一。显然,体积小,速度快,功耗低的崭新器件,对超越集成电路的物理限制具有重大意义。随着研究工作的深入发展,近年科学家已研制成功单电子晶体管,只要控制单个电子就可以完成特定的功能。

在过去短短几十年中,硅芯片走过一条高速成长之路。30纳米晶体管技术将使硅芯片可以容纳4亿个晶体锋。但这种增长不可能永远持续下去。因为,硅芯片将很快走向终结。谁会成为传统的硅芯片电脑的终结者?目前科学家看好光电脑、生物电脑和量子电脑,其中又以量子电脑呼声最高。

光电脑利用光子取代电子进行运算和存储,它用不同波长的光代表不同数据,可快速完成复杂计算。然而要想制造光电脑,需要开发出可用一条光束控制另一条光束变化的光学晶体管。现有的光学晶体管庞大而笨拙,用其制造台式电脑,将有一辆汽车那么大,因此,光电脑短期内进入实用阶段很难。

DNA(脱氧核糖核酸)电脑是美国南加州大学阿德勒曼博士1994年提出的奇思妙想,他提出通过控制DNA分子间的生化反应来完成运算。

DNA是生物遗传的物质基础,它通过4种核苷酸的排列组合存储生物遗传信息。将运算信息排列于DNA上,并通过特定DNA片段之间的相互作用来得出运算结果,是DNA计算机工作的主要原理。

网德勒曼教授是DNA计算机研究领域的先驱。他于1994年在实验中演示,DNA计算机可以解决著名的“推销员问题”,首次论证了这种计算技术的可行性。“推销员问题”用数学语言来说,是求得在7个城市间寻找最短的路线,这一问题相对简单,心算就可以给出答案。

但这次阿德勒曼教授用DNA计算机演示的新问题难度就大多了,靠人脑的计算能力基本无法处理,这个问题可以形象化地表述如下:设你走进一个有100万辆汽车的车行,想买一辆称心的车。你向销售员提出了一大堆条件,如“想买一辆4座和自动档的”,“敞篷和天蓝色的”,“宝马车”等等,加起来多达24项。在整个车行中,能满足你所有条件的车只有一辆。从理论上说,销售员必须一辆辆费劲地找。传统的电子计算机用的就是这种串行计算的办法来求解。

阿德勒曼等设计的DNA计算机则对这一问题进行了并行处理。他们首先利用DNA片段编码了100万种可能的答案,然后将其逐一通过不同容器,每个容器都放入了代表24个限制条件之一的DNA。每通过一个容器,满足特定限制条件的DNA分子经反应后被留下,并进入下一个容器继续接受其他限制条件的检验,不满足的则被排除出去。

从解决这个问题的过程中可以看出,理论上,DNA计算机的运算策略和速度将优于传统的电子计算机。阿德勒曼教授说,虽然他们的新实验进一步提高了DNA计算机模型的运算能力,但总的来说,DNA计算机错误率还是太高;要真正超越电子计算机,还需要在DNA大分子操纵技术等方面有大的突破。而且目前流行的DNA计算技术都必须将DNA溶于试管液体中。这种电脑由一堆装着有机液体的试管组成,神奇归神奇,却也很笨拙。这一问题得不到解决,DNA电脑在可以预见的未来将难以取代硅芯片电脑。与前两者相比,量子电脑前景似乎更为光明。一些科学家预言,量子电脑将从新一代电脑研制热潮中脱颖而出。

中国科技大学量子电脑研究专家也提出了与此类似的观点,将量子形容为一种“玄而又玄”的东西,提出了一个比喻:如果一只老鼠准备绕过一只猫,根据经典物理理论,它要么从左边、要么从右边穿过。而根据量子理论,它可以同时从猫的左边和右边穿过。量子这种常人难以理解的特性使得具有5000个量子位的量子电脑,可在约30秒内解决传统超级电脑要100亿年才能解决的大数因子分解问题。由于意识到量子电脑问世后将对电脑及网络安全构成巨大冲击,美国科研机构正在密切关注量子电脑的进展。不少国家从国家利益出发,正在量子电脑研究领域展开激烈的角逐。

以日本为例,日本邮政省于2000年决定增加量子信息技术的研究投入,预计到2010年将达到400亿日元。按照日本邮政省的预计,量子信息技术将在2030午步人实用化阶段。2000年,量子电脑研究捷报频传。先是中国科学院知识创新工程开放实验室成功研制出4个量子位的演示用量子电脑。之后,美国IBM公司又推出5个量子位的演示用量子电脑。印度科学家也在紧锣密鼓地开展此项研究,印度国家研究所的科学家说,量子电脑将于2005年问世。在美国加州理工学院,科学家们甚至已经在从事量子因特网的研究。

量子电脑虽然威力无比,妙不可言,但要真正为人类造福还需耐心期待。由于量子电脑的原理与构造和传统计算机截然不同,科学家的研制工作几乎是从零开始,十分艰难。而量子电脑运行时所需的绝对低温、原子测控等苛刻条件更使这种“魔法”般玄妙的神物目前不可能像个人电脑机一样走人寻常百姓家。但人们也不必失望,几十年以后,当量子电脑走出实验室,真正可以实际应用时,普通人完全可以通过互联网访问远程的量子主机,指挥它于这于那,共享这项神奇的发明。

可以预料,虽然量子电脑距离实用化还有很长的一段路要走,但它取代硅芯片电脑可能只是时间问题。

人类还未诞生,就出现了2.5亿年前的电脑芯片,是谁留下的?

从人类信息交流和通信的演化进程可以清楚地体会信息技术的不断发展性.现代信息技术具有强大的社会功能,已经成为21世纪推动社会生产力发展和经济增长的重要因素.信息技术在改变社会的产业结构和生产的同时,也对人类的思想观念、思维方式和生活方式产生着重大而深远的影响.

21世纪,信息技术将会朝着以下几方面发展:

一、微电子向着高效能方向发展

当代的计算机都是建立在微电子学基础上的。过去在微电子学方面有一个摩尔定律:即芯片集成晶体管数量每18个月左右增加一倍。据最新研究,其已被突破,达到每12个月增加一倍。20世纪50年代,面积为0.1平方英寸的硅片上只能装上1个电子元件,现在则高达3万多个。

现在人们普遍认为微电子技术即将进入“后光刻时代”,未来随着纳米科技的发展可能将使计算机建立在更微观集成、更高速的基础之上,引起筛子领域的一次新的革命。其结果是:(1)效率更高。纳米技术能制造更节能、更便宜的微处理器,使计算机效率提高百万倍,可生产出更高效率的宽带网,海量存贮器,集传感、数据处理、通讯为一体的智能器件。(2)体积更小。纳米计算机可缩小到头发丝直径的千分之一。美国已利用纳米技术制造出了跳蚤大小的机器人,该项技术使用了微电脑,机器人具有初级逻辑思维能力。此外,该机器人还能在绝对危险或人类所不能及的环境条件下进行工作,用它可以完成核反应堆内的故障处理,此项技术也可用于原子的运送及原子的重新排列。(3)功能更奇。可把装有飞机驾驶程序的纳米芯片植入人体体内,通过细胞接受信息,不用培训你就能驾驶飞机。

预计本世纪应用电子自旋、核自旋、光子技术和生物芯片的功能强大的计算机将要问世,可以模拟人的大脑,用于传感认识和思维加工。预计在未来十多年内可以产生存贮量达到每立方毫米100万G,而功耗仅仅为超大规模集成电路千万分之一的生物芯片。

总之,可以预见,微电子与电子器件及集成结构功能将向着高集成度、高速度、低功耗、低成本方向发展。

二、计算机向着多极化方向发展

21世纪,计算机向着超高速度、小型化、并行处理(同时处理)、智能化方向发展。它的发展轨迹不同于自然界的“大鱼吃小鱼”,而是“快鱼吃慢鱼”,谁占领了市场先机谁就成为主导产品。

目前在计算机领域有一个10倍速定律:即每5~7年速度增加10倍,体积减少10倍,价格下降10倍,这一定律也即将被突破。

在超高速方面,IBM的高性能计算机峰值已达到每秒300万亿次以上。美国在2010年前研制出千万亿次计算机。从量子理论推出来的极限计算机,其速度将达1051次/秒,且内存可达1031比特。

在小型化方面,日本在利用集成电路方面,将一家电视台(包括设备和信息集存贮)压缩到纽扣小的芯片上,取得了初步成功。他们准备将其再压缩到药片大小,甚至设想将检查设备通过药片置入病人体内,以直接观察病人的病情。

在智能化方面,冰箱电脑里事先存储了你的饮食习惯,零食、油米酱醋等吃完了,它会自动连接互联网,替你向超市订购;微波炉可以自动下载食谱,只要你事先把买回的鸡鸭鱼肉放进去,它便会在你预定的时间自动进行解冻,并做成香喷喷的美味佳肴。

这些预测,实际为人们展现了信息技术无限广阔的发展前景,也说明信息技术离“成熟”还有很大的发展空间。

三、网络向着高级化方向发展

计算机技术属信息处理技术,通信技术属信息传输技术,在它们各自独立发展阶段,信息技术很难有大的突破。20世纪60年代以后,在计算机技术日臻完善、通信技术普遍数字化后,这两大信息技术在兼容与共存的基础上有机结合在一起,使信息技术进入了信息传输、处理、储存一体化的新时代,一方面实现了现代通信系统在计算机的控制下传播的自动化和高效化,各种通信方式一体化;另一方面,使计算机借助通信线路实现了网络化。总趋势是数据、话音和图像三种技术的融合。

计算机联网后其发展趋势表现为:

1.普及无线联网

通信技术与网络技术相互融合,进一步发展为以无线保真技术为基础的无线联网。它可以通过便携式电脑或其他运算器件随时随地高速联网,而无需电缆。无线保真技术将使个人拥有网络通信能力,这是一次深刻的社会进步。

2.能量无限扩充

网络的出现,使信息真正成为了继物质、能源之后的第三大重要。计算机联网,特别是1994年因特网商业化以来,因特网带来的网络革命的冲击使世人震惊。用美国人的话来形容:变革之大犹如10次工业革命和基督教改革加在一起发生在一代人之内。因特网造就的电子空间正成为世界各国继陆地、海洋、天空之后争先抢占的“新边疆”,因为,谁在电子空间占有优势,谁就会在网络经济的发展中获得丰硕经济利益,美国近年来经济的发展就是一个实例。的确,网络技术的应用,使计算机的能量实现了无限扩充,信息得到了最充分的利用。因为,一个设计优良的网络能够把联机的累积力量植入每个单机;一部微机所联系的网络越大,它的用处越多,力量也越强;上网工作时,不是在使用个人的计算机,而是在使用一台能量无限扩充的庞大计算机。不仅如此,未来的网络发展是要将分布在地球各个角落宽带多媒体业务无缝地连接起来,用户可以在任何一个地方用任何一种接入方式,访问全球任何一个数据库和网络。同时可以和任何用户保持任何方式的通信交流。另外,网络将超越地球引入太阳系甚至更远的空间。

3.功能逐步完善

传统网络由于技术和基础设施的局限,在网络安全、规模、性能、提供的业务能力方面都存在缺陷,未来的网络必将朝着更大、更快、更及时、更安全、更方便的方向发展。

由中国自主研发的下一代互联网主干网核心技术2006年9月正式通过国家验收,这一成果确定了中国在世界下一代互联网中的领先地位,也标志着中国在世界下一代互联网研究与建设上占据了一席之地。下一代互联网主干网在核心技术上实现了四大突破,其中三项属于国际首创,这不仅确立了中国在下一代互联网领域的领先定位,有了话语权,更重要的是,彻底摆脱了对国外互联网关键技术及产品的依赖,在确保国家信息安全的同时,对中国互联网产业将产生重要影响。

下一代互联网与现代互联网的区别:更快;更大;更安全;更及时;更方便。

——更快。下一代互联网将比现在的网络传输速度提高1000-10000倍。

——更大。目前,网络最大的问题就是网络地址有限,在目前的IPV4协议下,现有地址中的70%已分配光,明显制约着互联网的发展。从理论上讲,现在使用的IP地址有43亿个,其中北美占有3/4,约30亿个,而人口最多的亚洲只有不到4亿个,中国只有3000万多一点,由于IP地址不足,许多国家只有用地址共享、拔号上网的方式利用互联网,严重制约了这些国家互联网的应用和发展。与现在的网络相比,下一代互联网将逐渐放弃IPV4,启用IPV6地址协议,下一代网络的最大优势就是网络地址近乎无限,每人可以拥有1600万个IP地址,几乎可以给你家庭中的每一个可能的东西分配一个自己的IP地址,每个用户的汽车、洗衣机、电话、冰箱等IP地址,在全球互联网上都是唯一的,让数字化生活变成现实。

——更安全。目前的计算机网络因为种种原因,存在大量安全隐患,下一代互联网将在建设之初就充分考虑安全问题,可以有效控制、解决网络安全问题。

总之,人类将全面进入信息时代。信息产业无疑将成为未来全球经济中最宏大、最具活力的产业。信息将成为知识经济社会中最重要的和竞争要素。

电脑的发展史?

地球作为太阳系中的唯一生命体星球,孕育了各种各样的生命体,而人类的诞生使地球文明更进一步。不过人类文明诞生的历史还是比较短暂的,只有几百万年的时间,但是人类在几百万年的时间里,通过不断的发展、演变,如今所掌握的科技还是非常强大的。

人类作为地球上的高等生物,站在地球食物链的最顶端,随意支配着地球,但是放眼整个宇宙,人类的力量是微不足道的,毕竟连地球都只是一颗渺小的星球,因此曾经科学家就提出了猜想,在宇宙深处或许还存在着其他外星文明。

虽然这些年来科学家一直致力于外星文明的探索,也没有任何发现,但是这并不能否认外星文明是不存在的。科学家的探索之路还是在不断向前的,科学家在俄罗斯进行考察的时候,发现了一个来自2.5亿年前的电脑芯片,据了解这个电脑芯片是在石头内部的,更加令科学家意外的是,这个芯片居然用的是二进制。

可是二进制也是在计算机出现之后才有的,难道在2.5亿年前就有电脑了,可是那个时候人类也并没有诞生,那么这个电脑又是谁研发的呢?这个问题让科学家百思不得其解,有科学家提出或许是外星文明所为,这一猜想提出不禁让人细思极恐。

如果外星文明真的存在的话,那么他们为什么会来到地球呢?如果这个电脑芯片真的是外星文明所为的话,那么外星文明所具备的能力可能比人类要更加强大,虽然我们当前并没有发现有关外星文明的任何信息,但是一旦这2.5亿年前的芯片是外星文明制造的,那么这就意味着在,2.5亿年前甚至更早之前,外星文明就已经来到了地球上。

如果这一切都是成立的,那么人类的诞生会不会也是外星文明创造的,不然人类为什么至今都没有飞出太阳系呢?我们对于太阳系外的事物还是充满了很多未知,这一点更加让人细思极恐。

曾经就有科学家将宇宙文明划分了等级,根据卡尔达舍夫等级来看,一级文明是是可以主宰这颗行星以及周围卫星能源的总和的文明;二级文明能够收集整个恒星系统的能源;而文明可以利用系系统的能源而为其所用,因此外星文明是非常强大的,人类在这些外星文明面前简直微不足道,因此人类很有可能被外星文明掌控,甚至是由外星文明创造的。

关于外星文明等级科学家也做出了不同的划分,但是不管是哪一种划分人类文明都是非常低级的,况且人类当前连最基本的依赖都无法摆脱,因此人类力量是非常渺小的,我们的科技也是很低级的,在探索外星文明上还有很长的路要走。

计算机发展趋势

电脑的发展历史

电脑的学名叫计算机,电脑是用来做计算的。在古时候,人们最早使用的计算工具可能是手指,英文单词“digit”既有“数字”的意思,又有“手指“的意思。古人用石头打猎,所以还有可能是石头来计算。?缺点:手指和石头太低效了

后来出现了”结绳?“记事。缺点:结绳慢,绳子还有长度限制。

又不知过了多久,许多国家的人开始使用”筹码“来计数,最有名的就要数咱们中国商周时期出现的算筹了。古代的算筹实际上是一根根同样长短和粗细的小棍子,大约二百七十几枚为一束;?多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的。数学家祖冲之计算圆周率时使用的工具就是算筹。算筹的缺点:使用算筹计算太麻烦了,很不方便——计算时需要慢慢摆放。

于是,人们发明了更好的计算工具——算盘,算盘最早可能在汉代萌芽,在南北朝时期定型,利用进位制计数。使用时需要配合一套口诀——好比计算机的软件。算盘本身还可以存储数字,使用时很方便。至今,算盘还在被使用。

15世纪,随着天文和航海的发展,计算工作越来越繁重,计算工具急需改进。

1630年,英国数学家奥特雷德在使用当时流行的对数刻度尺做乘法运算时,突然想到,如果用两根相互滑动的对数刻度尺,不久省去了用两脚规度量长度了么。他的这个想法导致了机械化计算的诞生,但奥特雷德对这件事情并没有在意,此后200年里,他的发明也就没有被实际应用。

18世纪末,发明蒸汽机的瓦特成功制作了第一把计算尺,在尺座上增加了一个滑标,用来“存储”计算的中间结果,这种滑标很长时间一直被后人所沿用。

1850年以后,计算尺迅速发展,成为工程师随身携带的”计算器“,一直到20世纪五六时年代,计算尺仍然是工科大学生的一种身份标志。

第一台真正计算机的出现

1623年,法国数学家帕斯卡出生,三岁丧母,后由担任税务官的父亲养大。在帕斯卡小时候,看到父亲费力的计算税率税款的时候,就想帮父亲做点事情。

19岁时(1642年),帕斯卡发明了人类有史以来第一台机械计算机——帕斯卡加法器。它是一种系列齿轮组成的装置,外形像一个长方盒子,用儿童玩具那种钥匙旋紧发条后才能转动,只能够做加法和减法。然而,即使只做加法,也有个“逢十进一”的进位问题。聪明的帕斯卡用了一种小爪子式的棘轮装置。当定位齿轮朝9转动时,棘爪便逐渐升高;一旦齿轮转到0,棘爪就“咔嚓”一声跌落下来,推动十位数的齿轮前进一档。

1662年帕斯卡去世,不久后,在德国的大数学家莱布尼茨看到了帕斯卡关于加法计算机的论文,勾引起了他的发明欲。莱布尼茨早年经历坎坷,后来获得了一次去法国的机会,在巴黎的时候,他聘请了一些著名的机械专家和能工巧匠,终于在1674年制造出了一台更完美的机械计算机。

莱布尼茨发明的新型计算机约有1米长,内部安装了一系列齿轮机构,除了体积较大之外,基本原理继承于帕斯卡。不过,莱布尼茨技高一筹,他为计算机增添了一种名叫“步进轮”的装置。步进轮是一个有9个齿的长圆柱体,9个齿依次分布于圆柱表面;旁边另有个小齿轮可以沿着轴向移动,以便逐次与步进轮啮合。每当小齿轮转动一圈,步进轮可根据它与小齿轮啮合的齿数,分别转动1/10、2/10圈……,直到9/10圈,这样一来,它就能够连续重复地做加法。

连续重复的计算加减法

连续重复的计算加法是现代计算机做乘除法用的办法,莱布尼茨的计算机加减乘除四则运算一应俱全。

在介绍莱布尼茨的时候还有一个小插曲。(传说大约在1700年左右的某天,莱布尼茨的朋友送给他一副中国的”易图“,其实就是八卦图,在看八卦图的时候,发现八卦的每一种卦象都有阴阳两种符号组成,这不就是有规律的二进制数字么,于是他就由此,率先系统提出了二进制的运算法则,直到今天,我们用到的计算机还是使用的二进制。)

计算机发展到现在还是人去操作机器,还没有实现人与机器的对话,或者是把人类的思想告诉机器,让机器按照人的想法去自动执行。说到实现人机对话,就要说一下另外一个行业——纺织业。

提花编织机是具有升降纱线的提花装置,是一种能使绸布编织出图案花纹的织布机器。

最开始编织机编织图案相当费事。所有的绸布都是用经线(纵向线)和纬线(横向线)编织而成。若要织出花样,织工们必须细心地按照预先设计的图案,在适当位置“提”起一部分经线,以便让滑梭牵引着不同颜色的纬线通过。机器当然不可能自己“想”到该在何处提线,只能靠人手“提”起一根又一根经线,不厌其烦地重复这种操作。

1725?年:法国纺织机械师布乔发明了“穿孔纸带”的构想。布乔想出了一个“穿孔纸带”的绝妙主意。布乔首先设法用一排编织针控制所有的经线运动,然后取来一卷纸带,根据图案打出一排排小孔,并把它压在编织针上。启动机器后,正对着小孔的编织针能穿过去钩起经线,其它则被纸带挡住不动。于是,编织针自动按照预先设计的图案去挑选经线,布乔的“思想”“传递”给了编织机,编织图案的“程序”也就“储存”在穿孔纸带的小孔中。

1790年?的时候法国机械师杰卡德,基本形成了改进提花机的构想,由于当时正是法国大革命时期,杰卡德为了参加革命,无暇顾及发明创造,直到1805年才真正完成”自动提花编织机“的制作。杰卡德为他的提花机增加了一种装置,能够同时操纵?1200?个编织针,控制图案的穿孔纸带后来换成了穿孔卡片。

在后来电子计算机开始发展的最初几年中,在多款著名计算机中我们均能找到自动提花机的身影。

18世纪末,法兰西发起了一项宏大的工程——人工编制《数学用表》,由于当时没有先进的计算工具,导致这项工作极其艰巨。发足数学界调集和大批的数学家,组成人工计算的流水线,算的昏天暗地才完成了17卷大部分的书稿,即便如此,计算出的《数学用表》仍有大量错误。

巴贝奇在他的自传《一个哲学家的生命历程》里写到,大约在1812年的,“有一天晚上,我坐在剑桥大学的分析学会办公室里,神志恍惚地低头看着面前打开的一张对数?表。一位会员走进屋来,瞧见我的样子,忙喊道:‘喂!你梦见什么啦?’我指着对数表回答说:‘我正在考虑这些表?也许能用机器来计算!’”

巴贝奇的第一个目标是制作一台”差分机“,

所谓“差分”的含义,是把函数表的复杂算式转化为差分运算,用简单的加法代替平方运算。那一年,刚满20岁的巴贝奇从法国人杰卡德发明的提花编织机上获得了灵感,差分机设计闪烁出了程序控制的灵光──它能够按照设计者的旨意,自动处理不同函数的计算过程。巴贝奇耗费了整整十年光阴,于1822年完成了第一台差分机,它可以处理3个不同的5位数,计算精度达到6位小数,当即就演算出好几种函数表。由于当时工业技术水平极低,第一台差分机从设计绘图到机械零件加工,都是巴贝奇亲自动手完成。当他看着自己的机器制作出准确无误的《数学用表》,高兴地对人讲:“哪怕我的机器出了故障,比如齿轮被卡住不能动,那也毫无关系。你看,每个轮子上都有数字标记,它不会欺骗任何人。”以后实际运用证明,这种机器非常适合于编制航海和天文方面的数学用表。

成功后,巴贝奇连夜上书学会,要求资助他建造第二台运算精度为20位的大型差分机。看到巴贝奇的研究有利可图,破天荒地与科学家签订了第一个合同。

然而,第二台差分机在机械制造工厂里触上了“暗礁”。第二台差分机大约有25000个零件,主要零件的误差不得超过每英寸千分之一,即使用现在的加工设备和技术,要想造出这种高精度的机械也绝非易事。

由于进度缓慢,到1842年的时候,宣布停止对巴贝奇的一切资助,连科学界的有人都用一种怪异的目光看他。

然而在这个时候,巴贝奇收到了一封信,写信人不仅对他表示理解而且还希望与他共同工作。娟秀字体的签名表明了她不凡的身份——伯爵夫人。收到信函不久后,写信的女士来到了巴贝奇的实验室,巴贝奇感觉与这位女士似曾相识,却有想不起在哪里见过。直到这位女士说”您还记得我吗?十多年前,您还给我讲过差分机原理。”看到巴贝奇迷惑的眼神,她又笑着补充说:“您说我像野人见到了望远镜。”巴贝奇恍然大悟,想起已经十分遥远的往事。?原来这位女士是大名鼎鼎的英国诗人拜伦之独生女——阿达·奥古斯塔。

在大型差分机进军受挫的1834年,巴贝奇提出了一个更新更大胆的设计——通用的数学计算机。巴贝奇称它为“分析机”,它能够自动解算100个变量的复杂算题,每个数字可以达25位,速度每秒1次。

巴贝奇首先为分析机构思了一种齿轮式的“存贮库”,每一齿轮可贮存10个数,总共能够储存1000个50位数。分析机的第二个部件是所谓“运算室”,其基本原理与帕斯卡的转轮相似,但他改进了进位装置,使得50位数加50位数的运算可完成于一次转轮之中。此外,巴贝奇也构思了送入和取出数据的机构、以及在“存储库”和“运算室”之间运输数据的部件。他甚至还考虑到如何使这台机器处理依条件转移的动作。一个多世纪过去后,现代电脑的结构几乎就是巴贝奇分析机的翻版,只不过它的主要部件被换成了大规模集成电路而已。仅此一说,巴贝奇就当之无愧于计算机系统设计的“开山鼻祖”。

阿达非常准确地评价道:“分析机'编织’的代数模式同杰卡德织布机编织的花叶完全一样”。于是,为分析机编制一批函数计算程序的重担,落她的肩头。阿达开天辟地第一回为计算机编出了程序,其中包括计算三角函数的程序、级数相乘程序、伯努利函数程序等等。阿达编制的这些程序,即使到了今天,电脑软件界的后辈仍然不敢轻易改动一条指令。人们公认她是世界上第一位软件工程师。众所周知,美国国防部据说是花了250亿美元和10年的光阴,把它所需要软件的全部功能混合在一种计算机语言中,希望它能成为军方数千种电脑的标准。1981年,这种语言被正式命名为ADA语言,使阿达的英名流传至今。当然这些都是后话了。

在当时,两人为把分析机的图纸变成现实,耗尽了全部财产,搞得一贫如洗,在此期间,两人为筹措研究经费,两人还商量“下海创收”,比如制作国际象棋玩具、游戏机等等。但这并没有带来什么改变,为此,阿达还两次把丈夫家中的祖传珍宝拿去当铺换钱,不过后来又被阿达的母亲赎了回来。在经历了贫困交加和无休止的脑力劳动,阿达的身体状况急剧恶化,1852年,年仅36岁的阿达怀着对分析机美好的梦想去世了。

阿达去世后,巴贝奇又默默的独自坚持了20年,晚年的他已经不能准确发音?和有条理的表达自己的意思,但仍坚持工作。1871年巴贝奇去世。最终分析机没有被制造出来。巴贝奇和阿达设想的分析机超出了他们所处时代至少一个世纪。

1890年,德国侨民霍列瑞斯博士在美国做人口普查(上一次人口普查人工花了7年),人口普查需要做大量工作,如年龄、性别等用调查表做集的项目,还要计算每个社区有多少老人、小孩,男人、女人等。霍列瑞斯博士就想用机器自动统计这些数据。几年后

他根据巴贝奇的发明和杰卡德的穿孔纸带设计了机器。结果花了6周就得出了准确的数据。

杰卡德和霍列瑞斯分别用开创了程序设计和数据处理之先河。以历史的目光审视他们的发明,正是这种程序设计和数据处理,构成了电脑“软件”的雏形。

1896年霍列瑞斯博士创办了IBM公司的前身。

到了现在,制造出来的计算机都是机械的,机械计算机向电子计算机发展的过渡时期发生的主要。

1906年,美国的德福雷斯特发明了电子管,为计算机的发展奠定了基础。

1907年,德福雷斯特向美国专利局申报了真空三极管(电子管)的发明专利。真空三极管可分别处于“饱和”与“截止”状态。“饱和”即从阴极到屏极的电流完全导通,相当于开关开启;“截止”即从阴极到屏极没有电流流过,相当于开关关闭。其控制速度要比艾肯的继电器快成千上万倍。

计算工具的演化经历了由简单到复杂、从低级到高级的不同阶段,例

如从“结绳记事”中的绳结到算筹、算盘计算尺、机械计算机等。它们在不同的历史时期发挥了各自的历史作用,同时也启发了现代电子计算机的研制思想。

1889年,美国科学家赫尔曼·何乐礼研制出以电力为基础的电动制表机,用以储存计算资料。

1930年,美国科学家范内瓦·布什造出世界上首台模拟电子计算机。

1946年2月14日,由美国军方定制的世界上第一台电子计算机“电子数字积分计算机”(ENIAC Electronic Numerical And Calculator)在美国宾夕法尼亚大学问世了。ENIAC(中文名:埃尼阿克)是美国奥伯丁武器试验场为了满足计算弹道需要而研制成的,这台计算器使用了17840支电子管,大小为80英尺×8英尺,重达28t(吨),功耗为170kW,其运算速度为每秒5000次的加法运算,造价约为487000美元。ENIAC的问世具有划时代的意义,表明电子计算机时代的到来。在以后60多年里,计算机技术以惊人的速度发展,没有任何一门技术的性能价格比能在30年内增长6个数量级。

第1代:电子管数字机(1946—1958年)

硬件方面,逻辑元件用的是真空电子管,主存储器用汞延迟线

、阴极射线示波管静电存储器、磁鼓、磁芯;外存储器用的是磁带。软件方面用的是机器语言、汇编语言。应用领域以军事和科学计算为主。

缺点是体积大、功耗高、可靠性差。速度慢(一般为每秒数千次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。

第2代:晶体管数字机(1958—1964年)

软件方面的操作系统、高级语言及其编译程序应用领域以科学计算和事务处理为主,并开始进入工业控制领域。特点是体积缩小、能耗降低、可靠性提高、运算速度提高(一般为每秒数10万次,可高达300万次)、性能比第1代计算机有很大的提高。

第3代:集成电路数字机(1964—10年)

硬件方面,逻辑元件用中、小规模集成电路(MSI、SSI),主存储器仍用磁芯。软件方面出现了分时操作系统以及结构化、规模化程序设计方法。特点是速度更快(一般为每秒数百万次至数千万次),而且可靠性有了显著提高,价格进一步下降,产品走向了通用化、系列化和标准化等。应用领域开始进入文字处理和图形图像处理领域。

第4代:大规模集成电路机(10年至今)

硬件方面,逻辑元件用大规模和超大规模集成电路(LSI和VLSI)。软件方面出现了数据库管理系统、网络管理系统和面向对象语言等。11年世界上第一台微处理器在美国硅谷诞生,开创了微型计算机的新时代。应用领域从科学计算、事务管理、过程控制逐步走向家庭。

由于集成技术的发展,半导体芯片的集成度更高,每块芯片可容纳数万乃至数百万个晶体管,并且可以把运算器和控制器都集中在一个芯片上、从而出现了微处理器,并且可以用微处理器和大规模、超大规模集成电路组装成微型计算机,就是我们常说的微电脑或PC机。微型计算机体积小,价格便宜,使用方便,但它的功能和运算速度已经达到甚至超过了过去的大型计算机。另一方面,利用大规模、超大规模集成电路制造的各种逻辑芯片,已经制成了体积并不很大,但运算速度可达一亿甚至几十亿次的巨型计算机。我国继1983年研制成功每秒运算一亿次的Ⅰ这型巨型机以后,又于1993年研制成功每秒运算十亿次的Ⅱ型通用并行巨型计算机。这一时期还产生了新一代的程序设计语言以及数据库管理系统和网络软件等。

随着物理元、器件的变化,不仅计算机主机经历了更新换代,它的外部设备也在不断地变革。比如外存储器,由最初的阴极射线显示管发展到磁芯、磁鼓,以后又发展为通用的磁盘,现又出现了体积更小、容量更大、速度更快的只读光盘(CD—ROM)。

计算机的发展趋势如下:

1、巨型化,指计算机具有极高的运算速度、大容量的存布空间;2、微型化,大规模及超大规模集成电路发展的必然;3、网络化,计算机技术和通信技术紧密结合的产物;4、智能化,让计算机能够模拟人类的智力活动。